首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1057篇
  免费   15篇
  国内免费   3篇
航空   477篇
航天技术   465篇
综合类   15篇
航天   118篇
  2022年   5篇
  2021年   11篇
  2019年   7篇
  2018年   9篇
  2017年   4篇
  2016年   10篇
  2015年   5篇
  2014年   22篇
  2013年   21篇
  2012年   31篇
  2011年   43篇
  2010年   28篇
  2009年   49篇
  2008年   94篇
  2007年   27篇
  2006年   28篇
  2005年   45篇
  2004年   37篇
  2003年   30篇
  2002年   25篇
  2001年   50篇
  2000年   19篇
  1999年   35篇
  1998年   36篇
  1997年   13篇
  1996年   32篇
  1995年   20篇
  1994年   33篇
  1993年   21篇
  1992年   29篇
  1991年   10篇
  1990年   14篇
  1989年   31篇
  1988年   13篇
  1987年   6篇
  1986年   12篇
  1985年   19篇
  1984年   27篇
  1983年   22篇
  1982年   20篇
  1981年   24篇
  1980年   6篇
  1979年   8篇
  1978年   6篇
  1977年   7篇
  1976年   5篇
  1975年   6篇
  1974年   3篇
  1970年   3篇
  1969年   4篇
排序方式: 共有1075条查询结果,搜索用时 23 毫秒
41.
A recursive multiple model approach to noise identification   总被引:2,自引:0,他引:2  
Correct knowledge of noise statistics is essential for an estimator or controller to have reliable performance. In practice, however, the noise statistics are unknown or not known perfectly and thus need to be identified. Previous work on noise identification is limited to stationary noise and noise with slowly varying statistics only. An approach is presented here that is valid for nonstationary noise with rapidly or slowly varying statistics as well as stationary noise. This approach is based on the estimation with multiple hybrid system models. As one of the most cost-effective estimation schemes for hybrid system, the interacting multiple model (IMM) algorithm is used in this approach. The IMM algorithm has two desirable properties: it is recursive and has fixed computational requirements per cycle. The proposed approach is evaluated via a number of representative examples by both Monte Carlo simulations and a nonsimulation technique of performance prediction developed by the authors recently. The application of the proposed approach to failure detection is also illustrated  相似文献   
42.
The plasma environment of comet 67P/Churyumov-Gerasimenko, the Rosetta mission target comet, is explored over a range of heliocentric distances throughout the mission: 3.25 AU (Rosetta instruments on), 2.7 AU (Lander down), 2.0 AU, and 1.3 AU (perihelion). Because of the large range of gas production rates, we have used both a fluid-based magnetohydrodynamic (MHD) model as well as a semi-kinetic hybrid particle model to study the plasma distribution. We describe the variation in plasma environs over the mission as well as the differences between the two modeling approaches under different conditions. In addition, we present results from a field aligned, two-stream transport electron model of the suprathermal electron flux when the comet is near perihelion.  相似文献   
43.
The Pre-CME Sun     
The coronal mass ejection (CME) phenomenon occurs in closed magnetic field regions on the Sun such as active regions, filament regions, transequatorial interconnection regions, and complexes involving a combination of these. This chapter describes the current knowledge on these closed field structures and how they lead to CMEs. After describing the specific magnetic structures observed in the CME source region, we compare the substructures of CMEs to what is observed before eruption. Evolution of the closed magnetic structures in response to various photospheric motions over different time scales (convection, differential rotation, meridional circulation) somehow leads to the eruption. We describe this pre-eruption evolution and attempt to link them to the observed features of CMEs. Small-scale energetic signatures in the form of electron acceleration (signified by nonthermal radio bursts at metric wavelengths) and plasma heating (observed as compact soft X-ray brightening) may be indicative of impending CMEs. We survey these pre-eruptive energy releases using observations taken before and during the eruption of several CMEs. Finally, we discuss how the observations can be converted into useful inputs to numerical models that can describe the CME initiation.  相似文献   
44.
The measurement that is “closest” to the predicted target measurement is known as the “nearest neighbor” (NN) measurement in tracking. A common method currently in wide use for tracking in clutter is the so-called NN filter, which uses only the NN measurement as if it were the true one. The purpose of this work is two fold. First, the following theoretical results are derived: the a priori probabilities of all three data association events (updates with correct measurement, with incorrect measurement, and no update), the probability density functions (pdfs) of the NN measurement conditioned on the association events, and the one-step-ahead prediction of the matrix mean square error (MSE) conditioned on the association events. Secondly, a technique for prediction without recourse to expensive Monte Carlo simulations of the performance of tracking in clutter with the NN filter is presented. It can quantify the dynamic process of tracking divergence as well as the steady-state performance. The technique is a new development along the line of the recently developed general approach to the performance prediction of algorithm with both continuous and discrete uncertainties  相似文献   
45.
To clarify the effects of gravity on heat/gas exchange between plant leaves and the ambient air, the leaf temperatures and net photosynthetic rates of plant leaves were evaluated at 0.01, 1.0, 1.5 and 2.0 G of 20 seconds each during a parabolic airplane flight. Thermal images of leaves were captured using infrared thermography at an air temperature of 26 degrees C, a relative humidity of 15% and an irradiance of 260 W m-2. The net photosynthetic rates were determined by using a chamber method with an infrared gas analyzer at an air temperature of 20 degrees C, a relative humidity of 50% and a photosynthetic photon flux of 0.5 mmol m-2 s-1. The mean leaf temperature increased by 1 degree C and the net photosynthetic rate decreased by 13% with decreasing gravity levels from 1.0 to 0.01 G. The leaf temperature decreased by 0.5 degree C and the net photosynthetic rate increased by 7% with increasing gravity levels from 1.0 to 2.0 G. Heat/gas exchanges between leaves and the ambient air were more retarded at lower gravity levels. A restricted free air convection under microgravity conditions in space would limit plant growth by retarding heat and gas exchanges between leaves and the ambient air.  相似文献   
46.
Researchers from 5 Japanese universities have developed a plant growth facility (Space Plant Box) for seed to seed experiments under microgravity. The breadboard model of the Space Plant Box was fabricated by assembling subsystems developed for microgravity. The subsystems include air conditioning and water recycle system, air circulation system, water and nutrient delivery system, lighting system and plant monitoring system. The air conditioning and water recycle system is simply composed of a single heat exchanger, two fans and hydrophilic fibrous strings. The strings allow water movement from the cooler fin in the Cooling Box to root supporting materials in the Plant Growth Chamber driven by water potential deficit. Relative humidity in the Plant Growth Chamber can be changed over a wide range by controlling the ratio of latent heat exchange to sensible heat exchange on the cooling fin of the heat exchanger. The transpiration rate was successfully measured by circulating air inside the Plant Growth Chamber only. Most water was recycled and a small amount of water needed to be added from the outside. The simple, air conditioning and water recycle system for the Space Plant Box showed good performance through a barley (Hordeum vulgare L.) growth experiment.  相似文献   
47.
The dried, fleshy stems of Cistanche deserticola (Orobanchaceae) are popular tonics in Traditional Chinese Medicine (TCM) to treat the inability of kidney in expelling extra fluid in the body, causing fluid retention, and reform reproductive system. However, the wild plants of C. deserticola have become endangered due to habitat downsizing and over-harvesting for its medicinal usages. The present research was carried out for the following purposes: (1) promoting the space-breeding research; (2) providing molecular evidence for agricultural selective breeding; and (3) protecting this endangered herbal medicine and conserving its genetic resources.  相似文献   
48.
The Relativistic Proton Spectrometer (RPS) on the Radiation Belt Storm Probes spacecraft is a particle spectrometer designed to measure the flux, angular distribution, and energy spectrum of protons from ~60 MeV to ~2000 MeV. RPS will investigate decades-old questions about the inner Van Allen belt proton environment: a nearby region of space that is relatively unexplored because of the hazards of spacecraft operation there and the difficulties in obtaining accurate proton measurements in an intense penetrating background. RPS is designed to provide the accuracy needed to answer questions about the sources and losses of the inner belt protons and to obtain the measurements required for the next-generation models of trapped protons in the magnetosphere. In addition to detailed information for individual protons, RPS features count rates at a 1-second timescale, internal radiation dosimetry, and information about electrostatic discharge events on the RBSP spacecraft that together will provide new information about space environmental hazards in the Earth’s magnetosphere.  相似文献   
49.
50.
This paper discusses the errors in analyzing solar-terrestrial relationships, which result from either disregarding the types of interplanetary drivers in studying the magnetosphere response on their effect or from the incorrect identification of the type of these drivers. In particular, it has been shown that the absence of selection between the Sheath and ICME (the study of so-called CME-induced storms, i.e., magnetic storms generated by CME) leads to errors in the studies of interplanetary conditions of magnetic storm generation, because the statistical analysis has shown that, in the Sheath + ICME sequences, the largest number of storm onsets fell on the Sheath, and the largest number of storms maxima fell at the end of the Sheath and the beginning of the ICME. That is, the situation is observed most frequently when at least the larger part of the main phase of storm generation falls on the Sheath and, in reality, Sheath-induced storms are observed. In addition, we consider several cases in which magnetic storms were generated by corotating interaction regions, whereas the authors attribute them to CME.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号